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There have been several attempts to introduce approximations into the exact form of
Lilley’s equation in order to express the source term as the sum of a quadrupole whose
strength is quadratic in the fluctuating velocities and a dipole whose strengsth s
proportional to the temperature fluctuations. The purpose of this note is to show that
it is possible to choose the dependent (i.e., the pressure) variable so that this type of
result can be derived directly from the Euler equations without introducing amy
additional approximations.

1. Introduction

The subject of aeroacoustics was first put on a rational basis by Lighthill (1932,
1954) when he rearrainged the Navier-Stokes (Euler) equations into the form of 2
linear wave equation for a medium at rest with a quadrupole type source term Thke
crucial step in Lighthill’s so called acoustic analogy approach amounts to assunieg
that the source term is in some sense known or that it can at least be modeled in some
approximate fashion. While this approach was remarkably successful in predicting the
gross features of the sound radiation from turbulent air jets, the commercial airerzit
industry ultimately found that they needed a much more sensitive tool that was
capable of predicting how even relatively small changé’ in the flow would effect the
radiated sound. This motivated generations of researchefs to seek imp'rovexm*ms mtke
Lighthill approach. Early efforts were focused on accoumting for mean flow
interaction effects and there were a number of attempts to accomplish this by applvieg
ad hoc corrections to the original Lighthill predictions. A more satisfying
was the one adopted by Phillips (1960), Lilley (1974) and others, which amounted ©
deriving inhomogenous moving media wave equations for the sound gepemtyxn
process.

The dominant part of the Lighthill source term is quadratic in the wl flow
velocity, which can be decomposed into a mean plus a fluctating component. The
source function therefore contains terms that are both linear and quadratic in the
fluctuating velocity components. Lilley (1974) argued that the linear terms, which are
typically such larger than the quadratic quantities, do not actually radiate any souxd
and should, therefore, not be included in the source function, since they would tead ©
dominate over the much smaller quadrati¢ terms which are the true sources of scund
Including them would cause the sound source to be contaminated by the small but
inevitable errors resulting from the actual computation of these terms and, wounid
thereby lead to inaccurate predictions of the sound field.

Unfortunately, the equation derived by Lilley has a complicated source wern
(Colonius, Lele, and Moin, 1997) which is not of the physically expected from Le, the
sum of a quadrupole whose strength is quadratic in the fluctuating velocities and 2
dipole whose strength is proportional to the temperature fluctuations. There have bemn
a number of attempts to obtain such a source term by introducing various
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approximations into Lilley’s equation. The purpose of this note is to show t_ht‘it' is "‘i
possible to choose the dependent (i.e., the pressure) variable so that this type of result
can be derived exactly without introducing any approximations.

2. The Lilley Equation and Related Background Information
Lilley (1974) showed that for an ideal gas the Navier-Stokes equations
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denotes the entropy, c, denotes the specific heat at constant pressure x = c,fc, denotes
the specific heat ratio, t denotes the time, x= {x;,x;,x; } are Cartesian constants, p

denotes the pressure, p the density, v = {v,, v,, v,} the fluid velocity, e,, the viscous
stress tensor, q, the heat flux vector and
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is the connective derivative, can be rearranged into the third order wave equation (see,
for example, Goldstein 1976, p. 253)
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is the squared sound speed, R is the gas constant, T is the temperature. ‘¥ represents
the effects of entropy fluctuations and fluid viscosity, which are generally considered
to be unimportant and are therefore neglected in the following discussion.

Linearizing the velocity and thermodynamic variables about the unidirectional
transversely sheared mean flow



v; = 8,U(x3,x3), p= p, = constant, T = T, (x3.x3) 3®)

and moving the nonlinear terms to the right hand side leads to the inhomogeneoas
Pridmore-Brown (1957) equation
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when p’ = p-p, << p,, i.¢., when the pressure ﬂuctuatiox}f are small.

The detailed expression for I" is given in Colonius, et al, (1997). This resuit is
still exact but the source term is now very complicated and even more i
does not exhibit the quadrupole form originally proposed by Lighthill (1952).
Lighthill emphasized the importance of properly exhibiting the correct multipole order
of the source term before introducing specific modeling assumptions for this quantity
and Colonius et al. (1997) showed the extreme sensitivity of the predicted sound field
to the detailed assumptions about the form of the source.

Goldstein (1984) carried out a systematic second order asymptotic expansion and
introduced a new dependent variable to show that
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to within second order accuracy. L,is defined in équation (10), the new dependent
variable 1 is defined by
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and
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is the fluctuating sound speed.

The source term in this equation is identical to the one that would be produced by
an externally applied force f*={f}, 5,4} and is therefore properly inferpreted as a
dipole. The first term in f represents the source that would be produced by the
fluctuating shear stress v,'v,” and can therefore be interpreted as a quadrupole. The
remaining term is a dipole source produced by the temperature fluctuations
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The quadrupole source scales like v'/¢, where ¢ is a characteristics length of the
turbulence and the second term scales like T'/T, (v"*/4), where T'/T, is of the order of
the turbulence Mach number squared for cold air jets, and should therefore be
negligible compared to the first when the flow is subsonic (Morfey, Szewezyk, and
Tester, 1978) 5

Colonius et al, (1997) showed that they could accurately reproduces” the
numerically predicted sound field radiated from a low Mach number shear layer by
substituting the numerically computed values for
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and U into (14) and numerically solving the resulting linear equation for &’. However,
the Goldstein expansion, on which this result is based, is, at best, only locally valid,
since nonlinear effects eventually dominate the near field disturbances and cause the
expansion to breakdown. And since the acoustic field depends on the global solution
to the problem, this approach does not lead to a rigorous derivation of the basic
acoustic analogy equation. '

3. The Exact Equation

The purpose of this note is to show that it is possible to obtain an exact
rearrangement of the Navier-Stokes (Euler) equations that leads to a third order
convective wave equation with a simple source term that still consists of a velocity
quadrupole plus a fluctuating temperature dipole by introducing an appropriate
dependent variable to represent the pressure fluctuations.

To this end, we neglect viscous and heat conduction effects (The final result can
easily be modified to include these effects by adding an addition term to the source
function.) and substitute (4) into (3) to obtain
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Then multiplying equations (1) and (2) by p"“/p, differentiating by parts and using (7)
and (21) shows that
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which upon introducing (11) and (17) can be written as
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where we have used equation: (24) to simplify equation (25). Upon introducing the
new dependent variables
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and using (12) and (18), these become the inhomogeneous linearized Euler equations
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where the extemally applied force £, is now given by
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These are identical in form to the linearized equatlons discussed in Chapter 1
of Goldstein (1976), where it is shown (by taking the convective derivative of the first
equations and the divergence of the second, subtracting the results and th:n using the



second equations with i = 1 to eliminate the velocity fluctuation on the left hand side)
that they can be rearranged into the inhomogeneous Pridmore-Brown equation
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which is identical to (14) but with the pressure fluctuation x now given by (27) and
the externally applied force fnow given by (30) rather than by (16). Notice that
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Finally, it is worth noting that (31) can be written as
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where L_is the same as (10) but with ¢2 replaced by 2= c—2+crmd
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is now a pure quadrupole source, which suggests that the dipole wemperature source in
(31) could also be interpreted as a weak nonlinear propagation.

Aside from the definition of the pressure fluctuation. the only difference
between equations (14) and (31) is the appearance of the pressure fluctuation factor
(1 + m) in the quadrupole strength (1 + %) v’ Since & should be of the order of the
turbulent intensity squared (which is typically small compared to unity) and since
substituting exact values of U and f; into (31) should yield exactly the same result as
the direct numerical solution for the sound field, this explains why Coloneus et al.
(1997) were able to obtain such good agreement using the two difTerent approaches.

Lighthill indicated that the basis of his acoustic analogy is the demonstration
that there is an exact analogy between the density fluctuations in any real flow and
those produced by a quadrupole source in an ideal stationary acoustic medium. The
present result shows that, aside from viscous and heat conduction effects, there is an
exact analogy between the (p/p,)"* fluctuations in any real flow and the corresponding
linear fluctuations in this quantity produced by a quadrupole plus a temperature
dipole source in an arbitrary ideal transversely sheared mean flow.
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